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Although relatively rare, leukemias place a considerable financial burden on society and cause

psychologic trauma to many families. Leukemia is the most common cancer in children. The
causes of leukemia in adults and children are largely unknown, but occupational and environmental
factors are strongly suspected. Genetic predisposition may also play a major role. Our aim is to use

molecular epidemiology and toxicology to find the causes of leukemia and develop biomarkers of
leukemia risk. We have studied benzene as a model chemical leukemogen, and we have identified
risk factors for susceptibility to benzene toxicity. Numerous studies have associated exposure to
benzene with increased levels of chromosome aberrations in circulating lymphocytes of exposed
workers. Increased levels of chromosome aberrations have, in turn, been correlated with a
heightened risk of cancer, especially for hematologic malignancy, in two recent cohort studies in
Europe. Conventional chromosome analysis is laborious, however, and requires highly trained
personnel. Further, it lacks statistical power, as only a small number of cells can be examined. The
recently developed fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR)-
based technologies have allowed the detection of specifiq chromosome aberrations. These
techniques are far less time consuming and are more sensitive than classical chromosomal
analysis. Because leukemias commonly show a variety of specific chromosome aberrations,
detection of these aberrations by FISH and PCR in peripheral blood may provide improved
biomarkers of leukemia risk. Environ Health Perspect 106(Suppl 4):937-946 (1998).
http://ehpnetl.niehs.nih.gov/docs/1998/Suppl-4/937-946smith/abstract.html
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Classification of Leukemia
Leukemia is a cancer of the blood-forming further designated as acute or chronic
system and has been defined as the uncon- leukemias. Acute leukemia is characterized
trolled proliferation of hematopoietic cells by aggressively proliferating cells that
that have lost the capacity to differentiate rapidly colonize the bone marrow and pre-
normally to mature blood cells (1). vent normal blood cell maturation; chronic
Leukemias are generally classified into lym- leukemia progresses much more slowly.
phocytic and myeloid categories, according Thus, there are four general categories of
to the cell lineage affected, and can be leukemias: acute lymphocytic (ALL),
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chronic lymphocytic (CLL), acute myeloid
(AML), and chronic myeloid (CML).
These classifications are not exhaustive
because a small number of acute leukemias
have features characteristic of both the
myeloid and lymphoid lineages, and are
thus designated acute biphenotypic
leukemias (2). In addition, another minor
form of chronic leukemia, hairy cell,
accounts for less than 2% of all cases (3).

The frequencies of these four major
types of leukemia in children differ from
those in adults (Table 1). Based on a
research report from the National Cancer
Institute (NCI), AML is the most common
form among adults, followed by CLL (3).
On the other hand, ALL, which occurs rela-
tively rarely among adults (approximately
6%), accounts for most childhood leukemia
cases (4). The acute leukemias are further
classified into subtypes under the French-
American-British (FAB) system. The sub-
types and frequencies of acute leukemias are
summarized in Table 2. In the United
States, myeloblastic and/or monoblastic
(M1, M2, M4, M5) leukemias are the most
common AMLs in both children and adults
(4,5), with the M4 category being the most
common form in newborns (6). Li is the
most common subtype ofALL in children,
whereas L2 is more frequently seen among
adults (Table 2) (7). However, the FAB
dassifications have not proved useful in the
clinical management of ALL; therefore,
ALL is more often subclassified according
to immunophenotype in the clinical setting
(4). Under this system, early pre-B cell and
pre-B cell are the most common forms of
childhood ALL (Table 2).

Incidence of Leukemia
The global incidence of leukemias is about
8 to 9 per 100,000 people each year.
Approximately 250,000 new cases occur
annually worldwide, about 28,000 of those
in the United States (8,9). Leukemia
accounts for 2.5% of overall cancer

Table 1. Classification of leukemia and frequencies in
children and adults.

Frequency, %
Cell lineage Childhood Adult

Lymphocytic
ALL 75 6
CLL Rare 25

Myeloid
AML 20 54
CML 5 15

Data from the National Institutes of Health (3).
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States has increased approximately 20%
over the past two decades, mostly in the 0-
to 4-year-old age group (10). Over the
course of this century, leukemia rates have
also generally increased. The incidence of
leukemia grew steeply between 1900 and
1940 (11), and in Denmark increased 3-
fold between 1943 and 1977, primarily
because of increases in AML (12). Between
1969 and 1977, AML also increased 20% in

Table 2. Subtypes and frequencies of acute leukemias.

Frequency, %
Subtypes Description Children Adultsa

AML
MO Minimal myeloid differentiation 2 ?
M1 Poorly differentiated myeloblasts 13 10
M2 Myeloblastic with differentiation 28 40
M3 Promyelocytic 6 10
M4 Myeloblastic and monoblastic 19 15
M5 Monoblastic 21 10
M6 Erythroleukemic 1 5
M7 Megakaryoblastic 10 >5

ALL
According to morphology (FAB)

L1 Small and homogeneous 85 31
L2 Larger and heterogeneous 14 60
L3 Larger and homogeneous 1 9

According to immunophenotype
Early pre-B cell 57 -

Pre-B cell 25
Transitional pre-B cell 1
B cell 2
Tcell 15

aAML in adult data includes children and adults; however, as childhood AML accounts for a small fraction of all
AML cases, these figures may represent adult percentages. Data modified from Pui (4), Lichtman (5), and
Mauer (7).

Table 3. Established and potential risk factors of adult and childhood leukemia.

Leukemias
Risk factors Adult Childhood

Genetic factors Family history Concordance of infant leukemia in twins
Genetic syndromes Down syndrome, Bloom syndrome,

ataxia telangiectasia, Fanconi anemia,
Familial monosomy 7, etc.

Ionizing radiation Atomic bombing In utero exposure to diagnostic X-rays
Nuclear accidents/testing Paternal preconception exposure
Occupational exposure
Radiotherapy
Residential radon

Chemical exposure Benzene Parental exposure to solvents/pesticides
Petrochemicals Maternal exposure to topoisomerase 11
Organic solvents inhibitors
Pesticides
Chemotherapeutic drugs

Others Viral infection (HTLV-1) Common infections (?)
Diet Diet (maternal and child)
Smoking Parental smoking

Previous maternal fetal loss
Maternal age and alcohol consumption
High birth weight

Assembled from Pui (4), SandIer and Ross (10), and Greaves (18).

the United States. Other studies indicate a

rise in myeloid leukemias in other industri-
alized countries during the same period
(13). Although overall leukemia rates have
remained relatively stable over the last 20
years, the incidence of AML, which
accounts for about 80 to 90% of acute
leukemias in adults (3,5), has increased sub-
stantially among men over 40 years of age

(14). The increased incidence of AML
among older males and the fact that the
highest rates of acute leukemia occur in
industrial areas both suggest the importance
of occupational and environmental risk fac-
tors. In addition, the incidence of certain
forms of preleukemia, known as myelodys-
plastic syndromes (MDS), may be increas-
ing, but this could actually reflect increased
awareness on the part of physicians and
extended use of diagnostic procedures in
elderly patients and may not be due to
changes in etiologic factors (15). However,
the incidence of MDS in Danish children
has been reported higher than generally
assumed and approximates the incidence of
childhood AML (16). MDS are life threat-
ening, as illustrated by the recent death of
the famous astrophysicist Dr. Carl Sagan.

Established Causes
of Leukemia
Heredity, radiation, chemical exposures, and
treatment with chemotherapeutic agents
have been implicated in the development of
leukemia. Viral infection by at least one

known virus, human T-cell leukemia/lym-
photropic virus type I (HTLV-1), is a well-
understood cause of adult T-cell leukemia
(17). The current etiology of leukemia was

extensively reviewed last year by Sandler and
Ross (10) and Greaves (18). The risk fac-
tors thought to be involved in leukemias are

summarized in Table 3.
Genetic predisposition may play a major

role in both adult and childhood leukemia
(Table 3). Although the Leukemia Society
of America emphasizes the fact that anyone

may develop the disease, an increased risk
exists among Eastern European Jews, and a

decreased risk exists among Asians (10) (dif-
ferences in diet and lifestyle may play a role,
however). Individuals with a family history
of leukemia or lymphoma have a 5.6-fold
increased risk forAML (10). Parents of chil-
dren with Down syndrome also have an

increased risk of leukemia, and individuals
with Down syndrome have a 10- to 20-fold
increased risk and a greatly increased inci-
dence of a particular subtype of leukemia,
AML-M7 (10). This association may

involve a potential leukemia gene called
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incidence and 3.5% of cancer mortality in
the United States. However, its incidence
among children demonstrates its signifi-
cance. Although childhood cases (through
14 years of age) account for about 12% of
all leukemias, childhood cancer is the sec-
ond biggest killer of children (after acci-
dents) and leukemia is the most common
form of childhood cancer (10). The inci-
dence of childhood ALL in the United
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AML1 at 21q22 (19). Another common
genetic abnormality is the rearrangement of
the MLL gene at 1 1q23, which is found
among 80% of infants with leukemia (10).
A familial form of monosomy 7 has also
been recognized, in which two or more sib-
lings develop myeloid leukemia before the
age of 20 (20). This may involve a tumor
suppressor gene on chromosome 7. As yet,
however, no leukemia-specific suppressor
genes have been identified, and these inher-
ited genetic defects can explain the causes
for only a small but significant proportion
of acute leukemias (up to 5%) (18).

Another group of risk factors includes
occupational and environmental exposure
to radiation or chemicals (Table 3). The
best established cause of leukemia among
children is in utero exposure to diagnostic
X-rays (10). Leukemia in adults is strongly
associated with occupational exposure to
ionizing radiation (18). Marie Curie and
her daughter Irene both probably died of
leukemia, and one of the greatest risks to
astronauts in traveling to Mars or beyond
may be leukemia from cosmic radiation
exposure. There is little evidence, however,
that nonionizing radiation such as electro-
magnetic fields (EMF) induces leukemia.
Indeed, two recent studies have shown that
EMF exposure is not a major risk factor for
leukemia in children (21) or in adults (22).

Occupational exposure to chemicals,
especially solvents containing benzene, has
been associated with leukemia (23).
Workers exposed to benzene with expo-
sures greater than 200 ppm-year have an
additional risk of developing AML, which
is more than 20 times greater than that of
the general population (24). The chemo-
therapeutic treatment of cancer induces
secondary myeloid diseases, including
AML and MDS. This induction is a major
clinical problem and accounts for up to 10
to 20% of all AML and MDS cases diag-
nosed (25). Drugs presenting the most risk
are alkylating agents, such as melphalan
and busulfan, and epipodophyllotoxin
topoisomerase II inhibitors. About 8% of
patients treated with alkylating agents
developed AML within 5 years after begin-
ning treatment (3). Children with ALL
treated with epipodophyllotoxins had a 5
to 12% cumulative risk ofAML (26).

Because most people in the general
population are not exposed to chemothera-
peutic drugs or occupationally exposed to
radiation or chemical solvents, exposure to
these agents cannot explain the causes of
the majority of leukemia and MDS cases
diagnosed each year. We conservatively

estimate that the causes of at least 20,000
(approximately 70%) of the 28,000 new
leukemia cases that develop annually in
the United States are unexplained. Thus,
the causes of leukemia remain largely
unknown. Although some success has been
achieved in treating leukemias, especially in
children, mortality rates have remained rel-
atively high (approximately 75% in the
United States) (9). Further, treatment may
cause long-term damage and increased mor-
bidity. Leukemias, therefore, place an enor-
mous financial burden on society and cause
serious psychologic trauma for many fami-
lies (27). Identifying the causes of leukemia
is therefore an important public health
concern, as it could lead to the eventual
prevention of this disease. Traditional epi-
demiologic studies have largely failed to
identify the causes of leukemias in the gen-
eral population. We have taken a molecular
epidemiologic approach, in which tradi-
tional epidemiologic methods are combined
with the latest tools of molecular biology
and cytogenetics, in investigating the causes
of leukemia. In recent years, our laboratory
has been searching for potential biomarkers
of benzene exposure that may be used to
find the causes of leukemia in the general
population. Benzene has served as a model
environmental leukemogen in these studies.

Benzene as a Model
Chemical Leukemogen
Benzene's toxic effects on the marrow were
first described in 1897 (28,29) and the first
case report of leukemia from benzene
appeared in 1928 (30). The ability of ben-
zene to cause AML was first fully established
in the 1970s following epidemiologic
studies in Italy and Turkey (23,31-33).
There have been numerous reports of smol-
dering leukemias and preleukemias pro-
duced by benzene (23). These would likely
be classified as MDS today. Recent studies
in China, led by Hayes and Yin (34,35) and
jointly sponsored by the NCI and the
Chinese Academy of Preventive Medicine
(CAPM), have established that benzene
causes AML and MDS in humans and have
also suggested that benzene exposure may be
associated with non-Hodgkin's lymphoma,
lymphocytic leukemia, lung cancer, and
nasopharyngeal cancer.

Benzene is an important commercial
product, with approximately 2 billion gal
produced annually in the United States. It is
used mainly as a starting material in the syn-
thesis of numerous chemicals. The main
public health issue concerning benzene in
the United States and other developed

countries is its use as a component of gaso-
line and the fact that the shift to unleaded
gasoline has tended to increase its benzene
content (36-42). In the United States, the
current benzene content of gasoline is gener-
ally below 1%, but in other countries super
unleaded gasoline can contain greater than
5% benzene (43). Another major source of
public exposure to benzene is cigarette smok-
ing. A pack-a-day smoker inhales approxi-
mately 2 mg/day, and nonsmokers who live,
travel, or work with smokers are exposed to
benzene through side-stream or second-hand
smoke (44). Because benzene is also present
in many foodstuffs, the background level of
benzene intake for nonsmokers has been esti-
mated at 0.5 mg/day (45). It is therefore dif-
ficult, if not impossible, to avoid exposure to
benzene. Furthermore, benzene and solvents
containing more than 1% benzene continue
to be used in many countries, including
China, former members of the Soviet Bloc,
South America (46-49), and even Spain,
where a case of benzene-induced aplastic
anemia was recently described (50).

Biomarkers in the Molecular
Epidemiology of
Benzene-Exposed Workers
Biomarkers are indicators of molecular and
cellular events in biologic systems and may
allow epidemiologists to better examine
relationships between environmental haz-
ards and human health effects. Biomarkers
can be classified into three categories: bio-
markers of exposure, biomarkers of suscep-
tibility, and biomarkers of early effect.
Along with colleagues from the the CAPM
in Beijing, the Shanghai Hygiene Anti-
Epidemic Center, the NCI, and other insti-
tutions in the United States, we have
applied various biomarker methods to sam-
ples obtained from workers exposed to high
levels of benzene. The goal of these studies
is to develop and validate a) biomarkers of
exposure to benzene, which include uri-
nary levels of benzene metabolites, DNA
adducts, protein adducts (such as albumin
or hemoglobin adducts), etc.; b) molecular
markers of susceptibility to benzene, such as
inherited genetic factors or defects
and polymorphisms of enzymes involved in
the metabolism of benzene, including
cytochrome P4502E1 (CYP2E1), myelo-
peroxidase (MPO), NAD(P)H:quinone
oxidoreductase (NQO1), glutathione S-
transferase (GST), etc.; and c) biomarkers
of the early effects of benzene, including
hematotoxicity (complete blood cell
counts), gene mutations (glycophorin A
[GPA] and ras, etc.), and chromosome
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aberrations detected by fluorescence in situ
hybridization (FISH), G-banding, and a
micronucleus assay. An overview of the
studies has been presented previously (51),
and only those findings pertaining to
susceptibility and identification of early
effects will be discussed here, along with
the generalizability of the findings to date.

Biomarkers of Susceptibility
to Benzene Hematoxicity
As described previously, individuals with
genetic defects or syndromes are highly sus-
ceptible to leukemias, though only a small
proportion of leukemia cases involve such
inherited susceptibility. It is possible that in
a much larger percentage of cases, inherited
polymorphisms in genes that encode car-
cinogen activation and detoxification
enzymes, such as the cytochrome P450s
and GST, could contribute indirectly to the
leukemia risk. Multiple dinical reports sug-
gest that people vary greatly in their suscep-
tibility to health risks from benzene
exposure. One possible reason might be
interindividual variation in metabolic
activation and detoxification of benzene
and its primary metabolites.

Several enzymes that are involved in
benzene metabolism and clearance have
been identified. Benzene is metabolized by
the hepatic enzyme CYP2E1 to benzene
oxide, which spontaneously forms phenol.
Phenol, in turn, is further metabolized by
CYP2E1 to di- and trihydroxybenzenes
such as hydroquinone (HQ), catechol

(CAT), and 1,2,4-benzenetriol (BT) (52)
(Figure 1). CYP2E1 therefore plays an
essential role in benzene toxicity by activat-
ing it to potentially toxic metabolites
(53,54). On the other hand, GST can
detoxify benzene oxide by converting it to a
less toxic or nontoxic derivative, phenylmer-
capturic acid (55). The polyhydroxy
metabolites HQ, CAT, and BT are further
converted in the bone marrow by MPO to
benzoquinones, which are potent hemato-
toxic and genotoxic compounds (Figure 1).
Benzoquinones can, in turn, be converted
back to less toxic hydroxybenzenes by
NQO1 (53,56) (Figure 1).

Between 5 and 20% of people in a given
population may lack significant NQO1
activity (57-59), potentially making them
susceptible to benzene toxicity. This varia-
tion is caused by a homozygous mutation
(609C -T) at position 609 in the NQO1
gene, which occurs among 5 to 6% of
Caucasians and African Americans and as
many as 18 to 20% of Chinese and other
Asians (59-61). To test the hypothesis that
individuals who were homozygous for the
NQ01609 mutation and possessed high
CYP2E1 activity would be susceptible to
benzene hematotoxicity, a case-control
study of occupational benzene poisoning
was conducted (low white blood cell count
<4000/mm3) in Shanghai (51,58). CYP2E1
activity was estimated by the fractional
excretion of chlorzoxazone in 50 cases of
benzene poisoning and 50 controls. Subjects
with both a rapid fractional excretion of

Benzene

CYP2E1

GST
Phenylmercapturic acid - Benzene oxide -

Phenol

CYP2E1

Di- and trihydroxybenzenes (HQ, CAT, BT)

NQ01 | MPO

Benzoquinones

Toxicity

Figure 1. Pathways of benzene metabolism leading to toxicity and detoxification.

Toxicity

t
trans,trans-Muconaldehyde

'I
trans,trans-Muconic acid

chlorozoxazone and homozygous NQOJ
mutant alleles were at a 7.6-fold increased
risk of benzene poisoning (58). We are also
currently investigating the role of the NQOI
609C -T mutation in acute leukemia in
general, induding therapy-related leukemias.
Preliminary evidence suggests that the
NQOI polymorphism is a risk factor for
some types of therapy-related leukemia.
MPO activates all the phenolic metabo-

lites of benzene to highly toxic free radicals
and quinones (62-64). MPO is an enzyme
found primarily in neutrophils and their
precursors. An inherited polymorphism in
the MPO gene has recently been described
(65). The polymorphism is a single base
substitution (G to A) in an Alu repeat in
the promoter region of the MPO gene. The
presence of an A rather than a G at this site
decreases expression by about two-thirds in
homozygous mutant individuals (65).
Theoretically, then, people who have
mutant homozygous alleles in MPO should
be at lower risk of benzene hematotoxicity.
This hypothesis is being tested in our labo-
ratory using a new restriction fragment
length polymorphism/polymerase chain
reaction (PCR) method for detecting the
mutant allele (66). Interestingly, this new
method has recently been used to show
that individuals with homozygous mutant
alleles in the MPO gene are at significantly
decreased risk of lung cancer. Further, ear-
lier studies using sequencing showed that
cases of AML-M3 and AML-M4 have a
decreased incidence of the mutant allele,
also suggesting that homozygous mutant
individuals would be resistant to these sub-
types ofAML (65). However, this analysis
was based on only eight cases ofAML-M3
and -M4 and requires confirmation.

The potential role of GST polymor-
phisms in benzene hematotoxicity is cur-
rently unclear. The GST-p (GSTM1) and
GST-0 (GSTT1) subclasses are especially
effective at detoxifying epoxides, including
benzene oxide that is converted to nontoxic
phenylmercapturic acid (Figure 1) (55).
Recent data, however, suggest that GSTs
will not provide protection against benzo-
quinone metabolites of benzene because the
glutathione conjugates of these metabolites
are also hematotoxic (67). Although one
study reported that the GSTTI null geno-
type (homozygous gene deletion) was asso-
ciated with an increased risk ofMDS (68),
a larger, more recent study did not find
such an association (69). Clearly, the role
of GSTs in susceptibility to benzene hema-
totoxicity and to acute leukemia and MDS
deserves further study.
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A summary of the potential role of
different genetic polymorphisms and metab-
olizing enzyme activities in susceptibility to
benzene toxicity is provided in Table 4. In
theory, individuals with high activities of
CYP2E1 and MPO and homozygous muta-
tions in the NQOI and GSTTJ/GSTMJ
genes would have the highest risk for
benzene hematotoxicity.

Biomarkers of Early Effect
from Benzene Exposure
Another potential method of predicting
who is most at risk for benzene-induced
leukemia is to determine the extent of the
genetic damage it produces in exposed indi-
viduals, using biomarkers of early effect.
One means of assessing genetic damage is to
measure mutations in specific genes such as
GPA (70,71). An increased GPA mutation
frequency has been found in children with
leukemia and in people exposed to radiation
and leukemogenic anticancer drugs (72).
An increased level of gene-duplicating muta-
tions in GPA has also been found in ben-
zene-exposed workers (73). Interestingly,
this increased mutation frequency was corre-
lated with cumulative exposure to benzene.
Because cumulative exposure to benzene
may correlate best with leukemia risk, the
GPA assay appears to have potential as a
biomarker of early biologic effect for ben-
zene and other leukemogens. The GPA
assay has drawbacks, however. First, it is rel-
atively insensitive: High benzene exposure
(mean time-weighted average [TWA] at
72 ppm) only elevated the combined
mutant frequency from 16.3 to 23.0 per
million, a 41% increase (73). Second, it
can only be performed on GPA heterozy-
gous (type MN) individuals, who statisti-
cally constitute only 50% of any given
population under study. Thus, although
the GPA assay can provide important
mechanistic information, it may not be an
ideal biomarker of early effect.

The most common means of detecting
genetic damage has traditionally been con-
ventional cytogenetics. Numerous publica-
tions, including the classic early studies of

Tough and co-workers (74,75) and Forni
and colleagues (76,77), have demonstrated
the clear association between benzene
exposure and increased levels of chromo-
some aberrations in peripheral blood cells.
More recent studies have suggested that
benzene may induce aberrations at TWA
concentrations below 10 ppm (78-83) and
have selective effects on certain chromo-
somes (84-87). We are currently investi-
gating the utility of these data in
improving the risk assessment for benzene.
Because chromosome aberrations in
peripheral blood lymphocytes are associ-
ated with increased risk for overall cancer
incidence (88), especially for increased
mortality from hematologic malignancies
(89), it is possible that specific chromo-
some aberrations may provide even better
markers of future leukemia risk.

Specific Chromosome
Aberrations as Biomarkers
of Leukemia Risk
Specific chromosome aberrations are the
hallmark of human leukemia (90-92).
Aneuploidy, the loss or gain of specific
chromosomes in AML and MDS (such as
trisomy 8 and monosomy 5 and monosomy
7), is commonly observed, as are specific
chromosome translocations, inversions, and
deletions [e.g., t(8;21), t(9;22), inv(16),
and long-arm deletion of chromosome 5]
(91). Up to 65% of acute leukemias con-
tain nonrandom somatically acquired chro-
mosomal translocations or inversions (93).
These numerical aberrations and structural
rearrangements affect gene expression in
ways that subvert normal cell proliferation,
differentiation, and survival.

The loss of chromosomes 5 and 7 and
their long-arm deletions are the two most
common changes in therapy-related AML
(t-AML) and MDS, especially among
patients previously treated with alkylating
agents (94). Treatment with topoisomerase
II inhibitors is associated with balanced
chromosome aberrations, such as t(4;1 1),
t(6;11), and t(11;19), in t-AML (94,95).
These specific chromosome aberrations are

Table 4. Susceptibility to benzene hematotoxicity: hypotheses on polymorphisms of enzymes involved in metabolic
activation of benzene and its detoxification.

Susceptibility to benzene Activation Detoxification
hematotoxicity CYP2E1 MPO NQ01 GSTT1/GSTM1
High High High Homozygous Homozygous
Medium High ? Wild-type/heterozygous ?

Low ? Homozygous ?
Low Low Low Wild-type/heterozygous Wild-type/heterozygous
?, uncertain. Data from Ross (53), Rothman et al. (58), and our current hypotheses.

also more common among leukemia
patients with previous exposure to chemical
solvents (including chronic exposure to
benzene, insecticides, petroleum, etc.)
(96,97). For example, one recent study
found an association between monosomy
7/long-arm deletion of chromosome 7
(del[7q]) and previous exposure to paints
(odds ratio 7.5) (97). In addition, trisomy
and monosomy of the C-group chromo-
somes (6-12, X) were present in the bone
marrow and blood of several benzene-
induced AML patients (98-101). Among
these cases, clonal expansion of trisomy C,
identified as trisomy 9 (98), and of trisomy
D (100) were observed in all leukemic cells
examined. Monosomy 7 was also found in
100% of the bone marrow cells of one of
the benzene-induced MDS cases (102).
Interestingly, the Philadelphia chromosome
was observed by classical cytogenetics in a
case of preleukemia (leukopenia) resulting
from chronic exposure to benzene for
4 years without the signs of leukemia; after
4 years without exposure, the aberration
disappeared (101).

Thus, specific chromosome aberrations
have been observed in both leukemia and
preleukemia patients previously exposed to
benzene. However, our studies have
addressed an additional question: whether
benzene exposure induces these specific
chromosome aberrations, which might lead
to the development of leukemia in exposed
but nondiseased individuals. In answering
this question, we believe that measuring
disease-specific chromosome aberrations in
exposed workers would be more significant
than measuring general nonspecific aberra-
tions, not only because disease-specific
chromosome aberrations probably have
better predictive value, but because recent
studies in our laboratory suggest that
chemicals cause aneuploidy of specific
chromosomes or produce greater damage
to some chromosomes than to others
(103). Most previous studies measured
only general chromosome aberrations in
benzene-exposed workers by conventional
cytogenetic analysis (78-80). The classic
assay, however, allows few cells to be exam-
ined, requires highly trained personnel,
and does not readily detect specific
chromosome aberrations.

Detection of Specific
Chromosome Aberrations
by FISH
Specific chromosome aberrations can now
be detected by FISH (104-106). FISH
offers several major advantages (107) over
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conventional chromosome aberration analy-
sis: FISH requires less-highly trained per-
sonnel; FISH is easier to perform, allowing
analyses to be performed in less time; FISH
analysis of metaphase cells is simpler, mak-
ing it possible to analyze 10 times more
metaphases; and FISH can detect very spe-
cific events identical to those found in
leukemia cells. These types of events may be
more strongly associated with subsequently
developing leukemia than overall estimates
of damage. FISH can therefore be used to
detect leukemia-specific aberrations in a
timely, sensitive, and cost-effective manner.

However, like conventional cytogenetic
methods, metaphase analysis by FISH can
only be performed on dividing cells. In
peripheral blood, the cells that can most
readily be stimulated to divide are the
T lymphocytes; therefore, the most com-
mon technique used is cytogenetic analysis
of metaphases from these cells. Peripheral
T lymphocytes, though a target of the
hematotoxic effects of benzene (108,109),
are clearly not the target of genotoxic dam-
age responsible for the development of
AML and MDS. Thus, the validity of mea-
suring AML-specific chromosome aberra-
tions in peripheral T cells might be
questioned. However, T cells might be con-
sidered a useful surrogate target because at
least a portion are relatively long lived (> 1
year) and accumulate aberrations. Further,
chromosome aberrations that confer selec-
tive advantages on cells of the myeloid lin-
eage [e.g., del(7q), t(8,21)] should have no
effect on T lymphocytes. Hence, detection
of specific aberrations in T-cell metaphases
is a measure of the number of cumulative
critical hits that have occurred in the blood,
and presumably the bone marrow, of con-
trol and exposed individuals on a per-cell
basis. Specific chromosome aberrations in
circulating T lymphocytes, which act as
long-lived surrogates for stem cells in the
marrow, may therefore serve as useful bio-
markers of leukemia risk for benzene.
We applied FISH to determine the

presence of specific chromosome aberrations
in the lymphocytes of workers exposed to
benzene and matched controls. Initially, we
studied hyperdiploidy levels of chromosome
9 in interphase cells because trisomy 9 had
been observed in benzene-poisoned patients
(98,110) and benzene metabolites induce
hyperdiploidy of this chromosome in cul-
tured lymphocytes in vitro (111,112). High
benzene exposure increased hyperdiploidy
of chromosome 9 in the lymphocytes of
otherwise healthy workers, with trisomy 9
being the most prevalent form (113). We

have used interphase cytogenetics to study
the hyperdiploidy of chromosomes 7 and 8.
The findings were briefly reported in
abstract form (114) and will be published
elsewhere. Interphase cytogenetics cannot
be used, however, to confidently detect
monosomy or rare translocations because of
artifacts related to probe overlap (104).
Monosomy 5 and 7 and translocations
(8;21) are among the most common aberra-
tions observed in AML (90,91). We have
therefore begun to use chromosome paint-
ing and region-specific fluorescent probes
to examine AML-specific aberrations,
including monosomy 5, monosomy 7,
del(5)(q31), del(7)(q22q34), and t(8;21), in
metaphase spreads prepared from the lym-
phocytes of workers exposed to benzene and
matched controls. Increased frequencies of
t(8;21) and trisomy 8 and 21 have been
detected among workers exposed to benzene
(115). Monosomy 5 and 7 and their long-
arm deletions also increased in the exposed
workers (116). Table 5 briefly summarizes
the specific chromosome aberrations
observed in AML and MDS detected in the
benzene-exposed workers by FISH.

Detection of Specific
Chromosome Aberrations
by PCR-Based Technology
Specific chromosomal aberrations can also
be detected by PCR and reverse transcrip-
tase (RT)-PCR (117-120). These methods
hold a number of advantages over FISH,
including the ability to detect very rare
events (1 copy/107 cells vs 1/104 cells by
FISH) and the ability to study large num-
bers of people easily and at low cost. These
seemingly potent advantages are offset,
however, by two major disadvantages.
First, the high sensitivity of PCR makes it
prone to false-positive results caused by
sample contamination. Second, quantita-
tion is difficult, especially for RT-PCR.
The former drawback can be overcome
with extremely rigorous lab procedures,
but the latter is mainly restricted to a quali-
tative value such as number of individuals
giving positive results. Because chromoso-
mal translocations involve the formation of

novel messenger RNAs and fused DNA
sequences, these aberrations have been
those mainly detected by PCR-based pro-
cedures capable of identifying the novel
but rare sequences in millions of normal
sequences. Liu et al. (118) demonstrated
that the BCL2 translocation [t(14;18)],
commonly found in patients with non-
Hodgkin's lymphoma, could be detected in
the blood of healthy individuals. Biernaux
et al. (121) observed similar results in 117
normal subjects tested by RT-PCR for the
presence of BCR-ABL fusion in RNA from
the t(9;22) (q34; ql 1) translocation. In
both studies the translocation could be
detected in up to 40% of normal healthy
subjects, and its presence increased in fre-
quency with age. PCR-based procedures
therefore hold great promise for detecting
specific chromosome aberrations, especially
when used in combination with FISH. We
are currently attempting to detect translo-
cations t(14;18), t(9;22), t(8;21), and
t(1 lq23) by both PCR and FISH in the
peripheral blood of workers highly exposed
to benzene and matched controls.

Benzene and Childhood
Leukemia
Clusters of childhood leukemias have
occurred around Superfund sites (122), and
in Britain, Knox (123) reported that cases
of childhood leukemia commonly occur
closer to industrial installations. He con-
cluded: "The common patterns of close
association of clustered and nonclustered
cases imply a common etiological compo-
nent arising from a common environmental
hazard-namely the use of fossil fuels, espe-
cially petroleum" (123). This work impli-
cates benzene and petroleum products in
the development of childhood leukemia,
but the findings are highly controversial and
were challenged in the literature (124).
Recently, Knox and co-workers (125)
expanded on their original findings and
examined relationships between addresses at
birth and death of children dying from
leukemia and other cancers in Britain and
the sites of potential environmental hazards.
They studied all 22,458 children 0 to 15

Table 5. Specific chromosome aberrations observed in AML/MDS are detected in benzene-exposed workers.

Chromosome aberration AML/MDS Benzene-exposed

Aneuploidy Trisomy 8 and 21 +7, +8, +9, +21
Monosomy 5 and 7 -5, -7

Long-arm deletion 5q-, 7q- 5q-, 7q-
Translocation t(8;21), t(9;22) t(8;21)
Inversion inv(16) Not done

Data from Le Beau (90), Hagemeijer and Grosveld (91), Zhang et al. (113,114,116), and Smith et al. (115).
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years of age who died from leukemia or
cancer in England, Wales, and Scotland
between 1953 and 1980. They found that
childhood cancers were geographically asso-
ciated with two main types of industrial
atmospheric effluent, namely: petroleum-
derived volatiles and kiln and furnace smoke
and gases, as well as effluents from internal
combustion engines. These findings support
their earlier conclusion that benzene expo-
sure is responsible for at least a portion of
childhood cancers. There seems to be no
positive association, however, between car
ownership and childhood ALL (126).

The findings of Knox and co-workers
are consistent with earlier reports from
Holland (127), China (128), the United
States (129), Britain (130), and Japan
(131) of an association between parental
exposure to solvents containing benzene and
increased risk of childhood leukemia. The
study in Britain (130) utilized face-to-face
interviews for exposure assessment and
found an odds ratio for parental benzene
exposure as high as 5.81 (95% confidence
interval [CI] 1.67-26.44). These studies
imply that benzene or its metabolites cause
genetic damage in female or male germ cells,
which is then passed on to the offspring or
causes direct genetic damage in the fetus fol-
lowing maternal exposure. They also imply
that key changes related to the development
of childhood leukemia occur before birth.
This idea is strongly supported by the work
of Ford, Greaves, and co-workers, which has
clearly shown that genetic changes related to
leukemia development occur before birth in

a number of cases (132), including twins
who developed T-cell leukemia at 9 years of
age (133). Benzene crosses the placenta, and
reproductive studies in both humans and
rodents have shown that benzene exposure
of either the male or the female can have
harmful effects on the fetus (134,135). The
idea that exposure of the male can lead to
leukemia in the offspring is supported by
the recent, quite startling finding that pater-
nal preconception smoking was related to a
significantly elevated risk of childhood can-
cers, particularly acute leukemia and lym-
phoma (136). The risks rose with
increasing pack-years of paternal preconcep-
tion smoking for ALL (p for trend= 0.01)
and total cancer (p for trend = 0.006).
Compared with children whose fathers had
never smoked cigarettes, children whose
fathers smoked more than 5 pack-years
prior to their conception had adjusted odds
ratios of 3.8 (95% CI= 1.3-12.3) for ALL.
Clearly, more studies are needed of the rela-
tionship between parental benzene exposure
and childhood leukemia, but evidence is
mounting that parental genotoxic exposure
is important and that key changes involved
in the subsequent development of child-
hood leukemia can occur before birth.

Biomarkers of Childhood
Leukemia Risk
We are studying a large number of cases of
childhood leukemia in Northern California
using molecular approaches and sub-
classification. FISH and PCR are being
used as tools to subclassify leukemias into

cytogenetic or molecular subtypes and help
determine etiology, as first suggested many
years ago by Kessler and Lilienfeld (137)
and expanded upon by Sandier and
Collman (11). Further, we aim to examine
whether certain cytogenetic changes are pre-
sent at birth, as is suggested by the research
findings described previously. If key genetic
changes occur in utero or are inherited from
one or both parents, we may be able to
detect these changes at birth using analysis
of neonatal blood spots (Guthrie cards)
from leukemia cases by PCR (138). If spe-
cific changes are detectable, it may be possi-
ble in the future to predict which children
are most at risk of subsequently developing
leukemia. Recently, Gale et al. (138) have
reported that t(4; 1 1) MLL-AF4 gene fusion
sequences can be detected in neonatal blood
spots of all patients 0.5 to 2 years of age.

Conclusion
Biomarkers of susceptibility to benzene-
induced hematotoxicity have been
developed and more will surely be forth-
coming. We and others are testing the util-
ity of these biomarkers in predicting who is
at risk for hematotoxicity and leukemia
from occupational and other environmen-
tal exposures. FISH and PCR-based proce-
dures, which measure the early effects of
benzene and specific chromosome aberra-
tions, also hold promise in predicting who
is most at risk from exposure to benzene
and other potential leukemogens. This
endeavor deserves long-term study and is a
future goal of our laboratory.
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